Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF16095 C-terminal of Roc, COR, domain

Copy number in non-pathogens:
Mean=0.02 Stddev=0.23

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Haloferula sp. BvORR071 s 4 1
Verrucomicrobium sp. BvORR034 s 12 3
Verrucomicrobium sp. BvORR106 s 8 2
Elizabethkingia anophelis s 4 1
Rivularia sp. PCC 7116 s 12 3
Pseudoalteromonas luteoviolacea S4054 s 4 1
Pseudoalteromonas sp. TB13 s 4 1
Calothrix sp. PCC 7103 s 8 2
Calothrix sp. PCC 6303 s 8 2
Synechococcus sp. PCC 7335 s 4 1
Runella zeae DSM 19591 s 12 3
Pannonibacter phragmitetus DSM 14782 s 4 1
Odoribacter laneus YIT 12061 s 4 1
Nostoc punctiforme PCC 73102 s 12 3
Acaryochloris marina MBIC11017 s 4 1
Actinoplanes subtropicus s 4 1
Micromonospora chokoriensis s 4 1
Vibrio parahaemolyticus s 4 1
Streptomyces scabiei s 4 1
Vibrio vulnificus s 4 1
Streptomyces scabiei s 4 1
Pseudomonas putida s 4 1
Streptomyces scabiei s 4 1
Streptomyces scabiei s 4 1
Streptomyces scabiei s 4 1
Nostoc sp. KVJ20 s 12 3
Flavobacterium chilense s 4 1
Elizabethkingia anophelis s 4 1
Flavobacterium chilense s 4 1
Mycobacterium chelonae s 4 1
Amycolatopsis pretoriensis s 4 1
Pseudomonas putida s 4 1

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna