Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF02945 Recombination endonuclease VII

Copy number in non-pathogens:
Mean=0.09 Stddev=0.37

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Mycobacterium intracellulare M.i.198 s 5 2
Nocardia concava NBRC 100430 s 5 2
Frankia sp. DC12 s 5 2
Streptomyces thermolilacinus SPC6 s 5 2
Frankia sp. CN3 s 5 2
Streptomyces sp. SA3_actF s 5 2
Segniliparus rugosus ATCC BAA-974 s 5 2
Mycobacterium sp. UM_WWY s 18 7
Streptomyces sp. HGB0020 s 5 2
Cronobacter sakazakii SP291 s 5 2
Mycobacterium abscessus MAB_110811_2726 s 5 2
Micromonospora chokoriensis s 5 2
Streptomyces sp. NRRL F-5555 s 5 2
Streptomyces scabiei s 7 3
Enterobacter sp. NFIX03 s 5 2
Burkholderia ubonensis s 5 2
Streptomyces scabiei s 7 3
Streptomyces atriruber s 5 2
Streptomyces gibsonii s 5 2
Streptomyces rangoonensis s 5 2
Burkholderia pseudomallei s 5 2
Streptomyces scabiei s 5 2
Streptomyces scabiei s 7 3
Streptomyces scabiei s 5 2
Streptomyces scabiei s 5 2
Streptomyces scabiei s 7 3
Streptomyces scabiei s 7 3
Streptomyces acidiscabies s 5 2
Mycobacterium chelonae s 10 4
Streptomyces pactum s 5 2
Amycolatopsis kentuckyensis s 7 3
Streptomyces scabiei s 5 2
Streptomyces scabiei s 5 2
Streptomyces scabiei s 5 2

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna