Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF03200 Glycosyl hydrolase family 63 C-terminal domain

Copy number in non-pathogens:
Mean=0.08 Stddev=0.31

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Chryseobacterium indologenes NBRC 14944 s 6 2
Simkania negevensis Z s 9 3
Chryseobacterium indologenes s 6 2
Bacteroides intestinalis DSM 17393 s 6 2
Chryseobacterium gleum ATCC 35910 s 6 2
Bacteroides cellulosilyticus DSM 14838 s 9 3
Bacteroides helcogenes P 36-108 s 6 2
Chryseobacterium sp. CF314 s 6 2
Pleurocapsa sp. PCC 7319 s 6 2
Opitutaceae bacterium TAV1 s 6 2
Bacteroides cellulosilyticus WH2 s 9 3
Methylobacterium sp. 285MFTsu5.1 s 6 2
Bacteroides oleiciplenus YIT 12058 s 15 5
Arenibacter algicola s 6 2
Leeuwenhoekiella sp. MAR_2009_132 s 6 2
Myxosarcina sp. GI1 s 6 2
Ruthenibacterium lactatiformans s 6 2
Chryseobacterium indologenes s 6 2
Bacteroides thetaiotaomicron s 6 2
Ruthenibacterium lactatiformans s 6 2
Chryseobacterium contaminans s 6 2
Chryseobacterium indologenes s 6 2
Maribacter ulvicola s 6 2
Chryseobacterium oranimense s 6 2
Chryseobacterium contaminans s 6 2
Chryseobacterium indologenes s 6 2
Chryseobacterium indologenes s 6 2
Chryseobacterium sp. T16E-39 s 6 2

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna