Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF10517 Electron transfer DM13

Copy number in non-pathogens:
Mean=0.14 Stddev=0.38

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Streptomyces scabiei s 4 2
Bacillus cereus s 4 2
Bacillus cereus s 4 2
Bacillus cereus Rock1-3 s 4 2
Rivularia sp. PCC 7116 s 17 7
Calothrix sp. PCC 7103 s 10 4
Calothrix sp. PCC 6303 s 4 2
Pleurocapsa sp. PCC 7319 s 4 2
Algoriphagus machipongonensis s 4 2
Mycobacterium abscessus subsp. bolletii BD s 4 2
Mycobacterium abscessus subsp. bolletii INCQS 00594 s 4 2
Labrenzia sp. DG1229 s 4 2
Stenotrophomonas maltophilia Ab55555 s 4 2
Sebaldella termitidis ATCC 33386 s 7 3
Acaryochloris marina MBIC11017 s 7 3
Stenotrophomonas maltophilia s 4 2
Acidovorax temperans s 4 2
Burkholderia ubonensis s 4 2
Stenotrophomonas maltophilia s 4 2
Bacillus thuringiensis s 4 2
Bacillus cereus s 4 2
Bacillus mycoides s 7 3
Xylophilus ampelinus s 4 2
Bacillus mycoides s 4 2
Streptomyces sp. 96-12 s 4 2
Bacillus thuringiensis s 4 2
Bacillus mycoides s 4 2
Bacillus cereus s 4 2
Bacillus mycoides s 4 2
Streptomyces scabiei s 4 2
Streptomyces scabiei s 4 2
Streptomyces scabiei s 4 2
Mycobacterium simiae s 4 2
Bacillus mycoides s 7 3
Bacillus mycoides s 4 2

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna